Bufalin-loaded bovine serum albumin nanoparticles demonstrated improved anti-tumor activity against hepatocellular carcinoma: preparation, characterization, pharmacokinetics and tissue distribution
نویسندگان
چکیده
OBJECTIVE To prepare and evaluate the liver-targeted drug delivery system of Bufalin with higher liver uptake and stronger antitumor activity against hepatocellular carcinoma. METHODS Bufalin-loaded bovine serum albumin nanoparticle was prepared by desolvation method, to investigate the in vitro release performance and to evaluate the pharmacokinetic and tissue distribution. The antitumor activity against hepatocellular carcinoma was evaluated in vitro and in vivo, respectively. RESULTS The Bufalin-loaded bovine serum albumin nanoparticle with an average particle size of 125.1 nm exhibited a sustained release behavior in vitro. The half-life, blood plasma area under the curve and apparent volume of distribution of Bufalin-loaded bovine serum albumin nanoparticle were significantly higher than that of Bufalin, whereas the clearance rate was lower than Bufalin group. The uptake of liver for Bufalin-loaded bovine serum albumin nanoparticle was 352.045 ± 35.665 ng/g while for Bufalin was 164.465 ± 48.080 ng/g (P < 0.01) at 5 min. The uptake of tumor for Bufalin-loaded bovine serum albumin nanoparticle was significantly higher than that of Bufalin both at 5 min (50.169 ± 11.708 ng/g, 93.415±13.828 ng/g, P < 0.01) and 15 min (43.683 ± 11.499 ng/g, 64.219 ± 17.684 ng/g, P > 0.05). Bufalin-loaded bovine serum albumin nanoparticle and Bufalin have similar antitumor activity in vitro. The tumor inhibition effect of Bufalin-loaded bovine serum albumin nanoparticle was stronger than that of Bufalin alone in vivo. CONCLUSION Bufalin-loaded bovine serum albumin nanoparticle is a promising liver-targeted drug delivery system with higher liver uptake and stronger antitumor activity against hepatocellular carcinoma.
منابع مشابه
Preparation of bufalin-loaded pluronic polyetherimide nanoparticles, cellular uptake, distribution, and effect on colorectal cancer
A large number of studies have shown that bufalin can have a significant antitumor effect in a variety of tumors. However, because of toxicity, insolubility in water, fast metabolism, short half-life, and other shortcomings, its application is limited in cancer therapy. In this study, we explored the anti-metastatic role of bufalin-loaded pluronic polyetherimide nanoparticles on HCT116 colon ca...
متن کاملNanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis
Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells,...
متن کاملCoordination bonding based pH-responsive albumin nanoparticles for anticancer drug delivery.
Zn-loaded bovine serum albumin nanoparticles (Zn-BSA nanoparticles) were prepared and used as carriers for pH-responsive anticancer drug delivery. Zinc was introduced into this system to increase the stability of the BSA nanoparticles and to load the anticancer drug based on the coordination bonding formation of Zn-BSA and Zn-drug molecules, respectively. The cleavage of either the "Zn-BSA" or ...
متن کاملTargeted Delivery of 5-fluorouracil with Monoclonal Antibody Modified Bovine Serum Albumin Nanoparticles
Herein, 1F2, an anti-HER2 monoclonal antibody (mAb), was covalently coupled to the surface of 5-Fluorouracil (5-FU) loaded bovine serum albumin (BSA) nanoparticles. Concerning two different crosslinkers for conjugation of 1F2, Maleimide-poly (ethylene glycol)-Succinimidyl carbonate (Mal-PEG5000-NHS) was selected due to its higher conjugation efficiency (23±4 %) obtained in comparison to N-succi...
متن کاملBSA nanoparticles loaded with IONPs for biomedical applications: fabrication optimization, physicochemical characterization and biocompatibility evaluation
Objective(s): Cancer diagnosis in its early stages of progress, can enhance the efficiency of treatment utilizing conventional therapy methods. Non-biocompatibility of iron oxide nanoparticles (IONPs) has made a big challenge against their usage as a contrast agent. Efficient coverage by biomolecules such as albumin can be a solution to overcome this problem. Herein, albumin-coated IONPs were p...
متن کامل